Preprint COUNTING CUSPS ON COMPLETE MANIFOLDS OF FINITE VOLUME

نویسندگان

  • Peter Li
  • Jiaping Wang
  • PETER LI
  • JIAPING WANG
چکیده

In this article, we consider complete, n-dimensional, Riemannian manifolds of finite volume. We assume that the Ricci curvature is bounded from below and normalized to have the lower bound given by Ric M ≥ −(n − 1).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L-Spectral theory of locally symmetric spaces with Q-rank one

We study the L-spectrum of the Laplace-Beltrami operator on certain complete locally symmetric spaces M = Γ\X with finite volume and arithmetic fundamental group Γ whose universal covering X is a symmetric space of non-compact type. We also show, how the obtained results for locally symmetric spaces can be generalized to manifolds with cusps of rank one.

متن کامل

Collisions at innity in hyperbolic manifolds

For a complete, finite volume real hyperbolic n-manifold M , we investigate the map between homology of the cusps of M and the homology of M . Our main result provides a proof of a result required in a recent paper of Frigerio, Lafont and Sisto.

متن کامل

Collisions at infinity in hyperbolic manifolds

For a complete, finite volume real hyperbolic n-manifold M , we investigate the map between homology of the cusps of M and the homology of M . Our main result provides a proof of a result required in a recent paper of Frigerio, Lafont, and Sisto.

متن کامل

Similar Fillings and Isolation of Cusps of Hyperbolic 3-manifolds

In this paper we deepen the analysis of certain classes Mg,k of hyperbolic 3-manifolds that were introduced in a previous work by B. Martelli, C. Petronio and the author. Each element of Mg,k is an oriented complete finite-volume hyperbolic 3manifold with compact connected geodesic boundary of genus g and k cusps. We study small deformations of the complete hyperbolic structure of manifolds in ...

متن کامل

Regularity of the Eta Function on Manifolds with Cusps

On a spin manifold with conformal cusps, we prove under an invertibility condition at infinity that the eta function of the twisted Dirac operator has at most simple poles and is regular at the origin. For hyperbolic manifolds of finite volume, the eta function of the Dirac operator twisted by any homogeneous vector bundle is shown to be entire.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009